

#### NOVEL ULTRAFILTRATION OPERATING PROCESS FOR SILICON WAFER PRODUCTION WASTEWATER REUSE

#### **Ben Freeman**

Hydranautics – A Nitto Group Company Antoine Leroux, Albert Shen, Osman Kung



The Authoritative Resource on Safe Water\*



# Outline

- Introduction
- Case Study 1
- Case Study 2
- Conclusions



#### Introduction

#### SEMICONDUCTOR SILICON WAFER FORECAST



GLOBAL SILICON WAFER SALES FORECAST IN MILLIONS OF SQUARE INCHES

2010 Water Consumption = 450 MGD\* 2015 Projected Water Consumption = 533 MGD\*

\* Assumes production of single 300 mm silicon wafer requires ~2000 gallons of water.

Source: Sage Concepts Market Report



#### Semiconductor Manufacturing Process (Back side)





C

# Back grinding (BG) and Dicing (DC)



Source: GRINDING OF SILICON WAFERS: WAFER SHAPE MODEL AND ITS APPLICATONS (Sun, 2005)

Back grinding WW Characteristics

| Particle Size | 0.1 - 0.3 |  |
|---------------|-----------|--|
| (µm)          |           |  |
| <b>—</b>      | 4 0 0 0   |  |

Turbidity >1,000 (NTU)



Backgrinding + Dicing WW (left) and Dicing WW only (right)



Source: www.adt-dicing.com

#### **Dicing WW Characteristics**

| Particle Size<br>(µm) | 0.2 - 2 |
|-----------------------|---------|
| Turbidity<br>(NTU)    | >100    |

#### Nitto MINING Company

### **Ultrapure Water Process**



- Reduction of source water consumption results in:
  - Lower source water and wastewater disposal cost
  - Potential reduction in primary treatment system sizing

BG/DC wastewater recycle/reuse





### System 1

| Parameter                       | Unit  | Value                                    |
|---------------------------------|-------|------------------------------------------|
| System capacity                 | m3/hr | 15                                       |
| Module type                     |       | Hydranautics HYDRAcap® MAX 60            |
| Number of racks                 |       | 1                                        |
| Number of modules per rack      |       | 6                                        |
| Gross operating filtration flux | LMH   | 32                                       |
| Concentrate bleed flow          | m3/hr | 1.5                                      |
| Filtration cycle duration       | min   | 45                                       |
| Physical cleaning method        |       | Air scour without backwash               |
| Air scour flow rate per module  | m3/hr | 4                                        |
| Chemical cleaning frequency     |       | Two 0.1% NaOH maintenance cleans per day |
| System Recovery                 | %     | 90                                       |

#### HYDRAcap® MAX 60 Overview

Nitto MILLO MULLOS

| Flow path              | Outside to inside                        |
|------------------------|------------------------------------------|
| Membrane material      | TIPS PVDF                                |
| Membrane configuration | Hollow fiber                             |
| Membrane area          | 840 ft <sup>2</sup> (78 m <sup>2</sup> ) |
| Fiber ID/OD            | 0.6/1.2 mm                               |
| Pore size              | 0.08 µm                                  |



1. Backwash





- 1. Backwash
- 2. Backwash + Air Scour





- 1. Backwash
- 2. Backwash + Air Scour
- 3. Air Assisted Liquid BW + Air Scour





- 1. Backwash
- 2. Backwash + Air Scour
- 3. Air Assisted Liquid BW + Air Scour
- 4. Air Scour





|   | Air Scour Step       | Typical Duration (s) |
|---|----------------------|----------------------|
| 1 | Stop Filtration      | 0                    |
| 2 | Air Scour            | 60                   |
| 3 | Air Scour and Drain  | 60                   |
| 4 | Refill               | 60                   |
| 5 | Resume<br>Filtration | 0                    |
|   |                      |                      |
|   |                      | Air —                |

Feed

Concentrate/ **Air Vent Filtrate** Mannes 60 Drain



|   | Air Scour Step           | Typical Duration (s) |
|---|--------------------------|----------------------|
| 1 | Stop Filtration          | 0                    |
| 2 | Air Scour                | 60                   |
| 3 | Air Scour and Drain      | 60                   |
| 4 | Refill                   | 60                   |
| 5 | <b>Resume Filtration</b> | 0                    |

Concentra **Air Vent** 

**Filtrate** 

Air flow: 12 - 15 m3/h per module Air pressure: 0.7 bar





|   | Air Scour Step      | Typical Duration (s) |
|---|---------------------|----------------------|
| 1 | Stop Filtration     | 0                    |
| 2 | Air Scour           | 60                   |
| 3 | Air Scour and Drain | 60                   |
| 4 | Refill              | 60                   |
| 5 | Resume Filtration   | 0                    |
|   |                     |                      |

Air

Feed

Concentrate/ **Air Vent Filtrate** Drain



20

|   | Air Scour Step      | Typical Duration (s) |
|---|---------------------|----------------------|
| 1 | Stop Filtration     | 0                    |
| 2 | Air Scour           | 60                   |
| 3 | Air Scour and Drain | 60                   |
| 4 | Refill              | 60                   |
| 5 | Resume Filtration   | 0                    |

Air

Feed





20

|   | Air Scour Step       | Typical Duration (s) |
|---|----------------------|----------------------|
| 1 | Stop Filtration      | 0                    |
| 2 | Air Scour            | 60                   |
| 3 | Air Scour and Drain  | 60                   |
| 4 | Refill               | 60                   |
| 5 | Resume<br>Filtration | 0                    |
|   |                      | Air ——               |

Feed

Concentrat **Air Vent Filtrate** Drain



te/

# System 1 – Operating Performance



- Flux ~ 20 gfd
- Stable TMP Avg. 4 psi
- Consistent Filtrate Turbidity <0.075 NTU</li>







# Case Study 2

| Parameter                         | Unit   | Value                                                 |
|-----------------------------------|--------|-------------------------------------------------------|
| System capacity                   | m3/day | 432                                                   |
| Module type                       |        | Hydranautics HYDRAcap® MAX 60                         |
| Number of racks                   |        | 1                                                     |
| Number of modules per<br>rack     |        | 6                                                     |
| Gross operating filtration flux   | LMH    | 35-40                                                 |
| Concentrate bleed flow            | m3/hr  | 1.5                                                   |
| Filtration cycle duration         | min    | 45                                                    |
| Physical cleaning method          |        | Air scour with backwash                               |
| Air scour flow rate per<br>module | m3/hr  | 4                                                     |
| Chemical cleaning<br>frequency    |        | Two caustic maintenance cleans per<br>day (0.1% NaOH) |
| System Recovery                   | %      | ~85                                                   |





20

# System 2 - Feed Water Quality

- Turbidity = 1100 NTU
- ~98% of particles larger than 0.1 micron







# System 2 – Operating Performance



Nitto MININAUTIC



## System 2 - Module Autopsy

- After ~1 year of operation, turbidity exceed 0.1 NTU
- Tensiometry revealed slight strength decline
  - Most likely due to improper draining



# System Cost Comparison

|                                         | Without<br>Reuse | With Reuse – BW Free<br>Operation (System 1)                         | With Reuse – Operation with BW<br>(System 2) |
|-----------------------------------------|------------------|----------------------------------------------------------------------|----------------------------------------------|
| Source Water and<br>Sewer Cost - \$/mo. | 8,140.31         | 1,866.24                                                             | 2,214.80                                     |
| Chem Cost - \$/mo.                      |                  | 128.65                                                               | 128.65                                       |
| Energy Cost - \$/mo                     |                  | 129.60                                                               | 129.60                                       |
| Operator - \$/mo                        |                  | 1,200.00                                                             | 1,200.00                                     |
| Total (\$/mo)                           | 8,140.31         | 3,324.50                                                             | 3,673.06                                     |
| Difference (\$/mo)                      |                  | 4,815.81                                                             | 4,467.25                                     |
| System Cost                             |                  | < \$150,000                                                          | \$150,000                                    |
| Simple Payback Period                   |                  | < 31 months                                                          | 33.6 months                                  |
|                                         |                  | 10.00<br>900<br>8.00<br>7.00<br>6.00<br>5.00<br>4.00<br>3.00<br>2.00 |                                              |



#### Conclusions

- Backwash free operation is capable of sustaining stable permeability, even when treating very high feed water turbidity
- Advantages of BW free system
  - Reduced OPEX through increased recovery
  - Reduced CAPEX through elimination of BW pump, tank, associated piping
- Proper drain piping arrangement critical



#### Conclusions

- BG/DC WW can be segregated from other use point wastewaters to optimize reuse potential and reduce CAPEX of primary UPW system by decreased equipment sizing
- Test operation without concentrate bleed
  - Payback period reduced by ~0.5 months for every 1% increase in recovery

