

Technical Application Bulletin

September 2022 TAB 119

Technical Position Paper High Recovery Energy Efficient Seawater RO

Executive Summary

New advances in membrane treatment technology have given designers new options to improve system designs to lower capital and operating costs. One of the recent advances is the use of multi-stage, high efficiency energy recovery devices for high pressure systems. Hydranautics now offers the IMSDesign Cloud RO projection program unique capability to evaluate increased SWRO (Seawater RO) system recovery from the current 38-45% up to 55-65%(1), depending on original feed water salinity and temperature. Hydranautics' popular projection software IMSDesign Cloud allows the RO system designer to simulate the high recovery SWRO systems using a multi-stage turbo design (Figure 1) which allows more complex design alternatives with multiple benefits, including:

- Higher permeate recoveries
- Reduced feed flows
- Increased permeate flows
- Reduced concentrate flows
- Better flux balances for reduced fouling
- Potential for lower CAPEX plant costs
- Potential for lower OPEX plant costs
- Results in a "greener" system design

Figure 1: Diagram of a 2-Stage Multi-stage Turbo design

Why High Recovery SWRO?

Engineers historically designed SWRO plants at 35 to 45% recoveries - limited by the maximum pressure limit of the membranes, lead element flux limits and permeate quality. As shown in Figure 2, one stage SWRO systems have significant flux difference between the lead and tail elements, which can lead to higher fouling rates for the lead element. This issue is more acute when higher permeable membranes are used. Figure 2 shows the comparison of flux distribution in a vessel for high flux SWRO elements

(SWC5) and ultra-high flux SWRO elements (SWC6). Although higher permeable membranes offer the potential of energy savings, they are also more at risk for higher fouling due to the high lead element flux. Recoveries greater than 50% require a 2-stage SWRO system to maintain the minimum concentrate flow per pressure vessel and lower lead element flux for fouling control. The flux balancing between the two stages is also important for improved permeate quality. There are a few two-stage SWRO plants, such as the Kindasa SWRO plant in Saudi Arabia (2). Plants such as these use an electric driven motorized booster pump between stages. With the better flux balancing between stages, it is possible to go to higher recovery, which minimizes the size of the intake, pretreatment, and brine line discharge. The combination of these savings can be significant for a seawater plant.

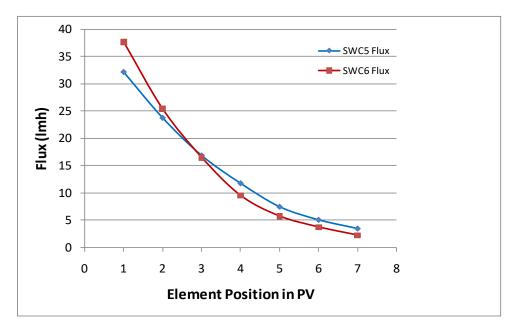


Figure 2: Flux distribution in a vessel with high rejection or high flow SWRO membranes

Another option to better balance flux in a SWRO system, is using hybrids without the use of a booster pump. In such a case, higher rejection, lower flow elements are used in the front of the vessel, and lower rejection/higher flow elements are used in the back of the vessel. An example of this is shown in Figure 3 and Table 1. This design improves flux balance in the vessel but results in higher salinity permeate and is often more complex to manage. Although the hybrid improves flux balance, it does not optimize the flux balance to always meet the designer's target. As seen in Table 1 pilot data, the lead SWC4 elements operated at 18.3 lmh versus 9.7 lmh for the tail SWC6 elements. If the higher flow/lower rejection elements in the back of the vessel could be run at more normal flux rates, this would help improve the permeate quality. This is one of the key features that is possible with the use of multiple stage turbos.

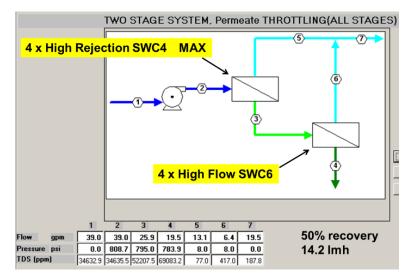


Figure 3: Schematic of a pilot run on Pacific Seawater with a Hybrid Element Design

	Flow (gpm)	Flux <u>(lmh)</u>	Actual Rec. <u>(%)</u>	Actual Pres. <u>(psi)</u>	рН	Temp <u>(C∘)</u>	Cond <u>(μS/cm)</u>	Actual TDS <u>(mg/I)</u>
Feed	39.0	х	х	811	7.6	19.5	49,640	34,633
Conc.	19.5	х	х	799	7.4	21.4	90,410	69,083
Vessel 1 (SWC4-MAX)	13.2	18.3	33.9%	x	6.9	19.7	120	55
Vessel 2 (SWC6)	6.3	9.7	24.4%	х	6.9	20.0	1,002	461
Total Permeate	19.5	14.2	50.0%	x	7.0	19.9	390	180

Table 1: Performance of the Pacific Seawater Pilot with Hybrid Element Design

Thus, both approaches, interstage booster pump and membrane hybrid, have design limitations. To address this, some equipment suppliers have offered a new concept using multiple-stage turbo chargers to efficiently recover energy and balance flux within both stages, while providing a simple system design. New studies have shown that the use of these multiple stage turbos can provide the most efficient membrane design. In some cases where the feed salinity is 40,000 mg/l or higher, the second stage would require ultra-high pressure RO elements. Therefore, it is important to look for a membrane supplier with a broad membrane offering.

Hydranautics SWRO and PRO-XP RO element offerings

Hydranautics supplies a wide range of SWRO membrane products, including the SWC series rated at 83 bar (1200 psi).

• The SWC4-LD and SWC4 MAX have the best rejection of salts and organics.

- The SWC5-LD and SWC5 MAX have the optimum salt and organic rejection combination and feed pressure requirement.
- The SWC6-LD and SWC6 MAX offer the lowest feed pressure SWRO membrane with good salt and organic rejection.

In some instances, the second stage feed pressures can exceed the 83 bar (1200 psi) SWRO membrane limit. Hydranautics has launched a new Ultra High-Pressure ULP membrane called PRO-XP.

• PRO XP series SWRO membranes rated up to 124 bar (1800 psi). The PRO-XP1 is an Ultra High-Pressure RO element that allows maximum recovery designs while producing good permeate quality.

The Multi-Stage SWRO designs can be used in a variety of RO markets including MLD and ZLD:

- SWRO system design recovery can be increased from the current 35-45% up to 55-70% depending on the feed salinity and temperature. The SWRO can use the Hydranautics standard SWC series membranes up to 83 bar (1200 psi). Technical Services Bulletin, TSB105 provides a pressure versus temperature chart for SWC membranes.
- **UHPRO** (Ultra High-Pressure RO) systems using the **PRO-XP** series membranes with pressure limits up to 124 bar (1800 psi) allow higher recoveries and reduced concentrate volumes.

• **ZLD** (Zero Liquid Discharge) and **MLD** (Minimum Liquid Discharge) systems can minimize the CAPEX and OPEX costs versus thermal evaporators and crystallizers by increasing the membrane system recoveries using Hydranautics SWC and XP membranes.

Improved Energy Efficiency while Balancing Stage Flux

Hydranautics has historically offered a computer design software with hydraulic turbocharger boost the 2nd stage feed pressure and better balance the flux in each stage. This method of reusing the energy in the final concentrate stream for boosting inter-stage pressure has been commonly used in brackish water RO. For high pressure, seawater systems, however, there is excess and unused energy remaining in the turbocharger exhaust after stage flux balancing. If not used, it would be wasted. Therefore, Hydranautics has upgraded in IMSDesign Cloud Software to allow users to add a second turbocharger on feed to stage one that utilizes the substantial exhaust pressure and reduces the pressure requirements of the high-pressure pump. This multi-stage turbo arrangement self regulates pressure changes, runs quietly and conserves energy. IMSDesign also uses new calculation routine which reflects the improved efficiency of new turbochargers. As a result, for the same interstage boost, they will yield higher exhaust pressures, which results in a greater boost on stage 1 (Figure 4).

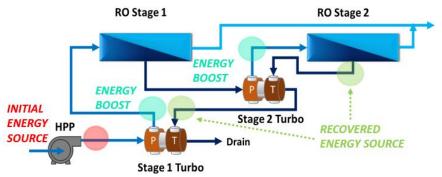
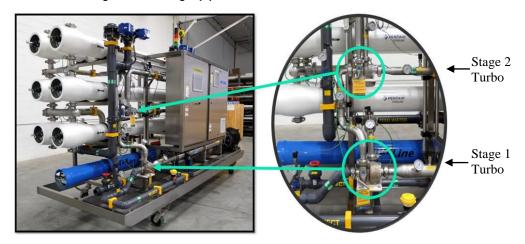



Figure 4: Multistage Turbo Energy Summary

A major turbo manufacturer has performed studies for 100 to 30,000 m3/day (18 to 5,500 gpm) SWRO systems (Table 2). Results estimate a potential for 9-28% lower CAPEX, 6-14% lower OPEX, and a lower Cost of Permeate of 8-18%. These cost savings enabled increased system recovery of 60% from the current 35-45% with a multi-stage turbo design (3).

Multi-stage turbo pilot by FEDCO using their patented BiTurbo design (used with permission by FEDCO)

Multi-Stage Turbo Design using IMSDesign Cloud Software

Hydranautics upgraded its IMSDesign Cloud projection software that allows the designer to discover benefits of the novel Multi-stage Turbo RO design feature. This feature is available only in the Cloud-based software and not the Desktop version. The Cloud version is available at <u>www.membranes.com</u>.

- The Stage 2 Turbo provides the desired interstage boost of 2nd stage feed pressure, which results in desired flux balance, increased permeate production and improved permeate quality.
- The Stage 1 Turbo recovers the unused hydraulic energy from the Stage 2 Turbo and boosts the 1st stage feed pressure. This "boost" has the added benefit of reducing the energy requirement and the size of the HPP (High-Pressure Pump) to the 1st stage.
- The design strategy is to balance fluxes between the 1st and 2nd stages using the two turbos to develop an optimal permeate quality and reduced fouling rate as well as conservation of system energy. The flux balancing of the stages can be performed with one RO or NF or with a hybrid combination of membrane types.
- The software gives instantaneous results of fluxes, flows, pressures, permeate quality, alarms, and specific energy usage in kWh per m3 or kWh per 1000 gallons of permeate produced.
- The control scheme and turbos used are well-proven over time, robust and straightforward.
- IMSDesign Cloud, by default with the Multi-Stage Turbo option selected, will automatically design the Stage 1 Turbo to have 1.0 bar exhaust concentrate pressure to drain and then design the Stage 2 Turbo to give a balanced flux between the stages. No data entry and trial and error are required. The user, however, can enter the values of his choice after the initial automatic design.

	Units	Pacific	Caribbean (60%)	Caribbean (65%)	Middle East
Feed Salinity (as mixed ions)	mg/l	36,177	37,853	37,853	45,056
Temperature	С	25 C	25 C	25 C	35 C
Array (2-stage 7M)	-	300 x 200	300 x 200	330x200	330x200
1st Stage elements	-	SWC4-MAX	SWC4-MAX	SWC4-MAX	SWC4-MAX
2nd Stage elements	- ,	SWC6-MAX	SWC6-MAX	PRO-XP1	PRO-XP1
% Recovery	%	60%	60%	65%	55%
Permeate flow	m3/h	2,000	2,000	2,000	2,000
Concentrate flow (size of out-takes)	m3/h	1,333	1,333	1,077	1,636
Feed flow (size of pretreatment)	m3/h	3,333	3,333	3,007	3,636
Pump Energy (per m3 of permeate)	kWh	2.40	2.50	2.79	3.10
Permeate Salinity	mg/l	279	293	408	600
Concentrate Salinity	mg/l	90,000	94,000	107,000	99,000
RO feed pump discharge	Bar	42	43	52	49
Stage 1 Turbo boost	Bar	11	11	6	13
1st Stage feed pressure (after Stage 1 turbo boost)	Bar	52	54	58	62
1st Stage maximum pressure (at design temperature)	Bar	77	77	77	73 at 35C
Stage 2 Turbo boost	Bar	21	22	41	41
2nd Stage feed pressure (after Stage 2 turbo boost)	Bar	70	73	96	100
2nd Stage maximum pressure (at design temperature)	Bar	77 at 25C	77 at 25C	124 at 25C	108 at 35C
Concentrate Exhaust pressure (to outfall or discharge)	Bar	1	1	1	1
1st Stage Flux	lmh	14.4	14.4	14.4	14.4
2nd Stage Flux	lmh	13.4	13.4	13.4	13.4
Feed Boron (at feed pH = 8.2)	mg/l	4.8	5.1	5.1	6.0
Permeate Boron (as B)	mg/l	1.2	1.3	1.5	2.6

Table 2: Projected SWRO Multi-Stage Turbo Startup Designs from Around the World

Case Study Projection: Multi-stage Turbo at 60% Recovery for Caribbean SWRO

When designing for high pressure applications, the pressure-temperature limits of Hydranautics PRO (Figure 5) and SWC elements will apply (Figure 6).

Attached are screenshots and printouts of the Hydranautics IMSDesign Cloud program for the Caribbean 60% recovery SWRO. Designing with the multi-stage turbo option is relatively straightforward:

- **1st step** is to enter the feed water analysis on the Analysis screen.
 - Cations and anions need to be balanced within $100\% \pm 10\%$
 - Seawater quality can use Conventional or MF/UF quality pretreatment. MF/UF is preferred if the source is an open-intake.
 - Temperature is a critical parameter, and the entire range should be projected
 - pH is important for determining permeate quality and concentrate solubilities
 - 2nd step is to enter the design data on the Design screen.
 - In this case, recovery is set at 60%
 - The permeate flow rate for the train is entered at 2,000 m3/h
 - Select the element you want to use for the 1st stage. SWC4 MAX
 - The elements you want to use are selected. This design uses SWRO elements with a low flow/high-pressure SWC4 MAX element in the 1st stage and a higher flow/lower pressure SWC6 MAX element in the 2nd stage. Using a tighter membrane in the 1st stage reduces the flux and throttles back permeate production and forces more permeate to be produced in the 2nd stage.
 - The program will automatically design a single preliminary stage 7M array with seven elements per pressure vessel. In this case, 500 vessels.
 - The required pressure vessels and elements meet the maximum allowable system flux for the feed water quality following IMSDesign guidelines.
 - Select two stages in Pass 1, and in this case, select the higher flow/lower pressure SWRO element Model SWC6 MAX for the 2nd stage.
 - Take the original number of pressure vessels, and in this case, use a 3:2 ratio of 1st stage vessels to 2nd stage vessels 300 vessels in the 1st stage and 200 vessels in the 2nd stage.
 - Now select the Turbo option.
 - Check the Turbo box next to Stage 1, and it will automatically load in the 1.0 bar for Stage 1 Turbo Exhaust pressure.
 - 1.0 bar is the default minimum to prevent cavitation and can be higher if desired if required for sufficient concentrate disposal requirements.
 - Select Run or Print
 - The automatic design will balance fluxes between stages 1 and 2 within one lmh. The Stage 2 Turbo is designed to achieve the stage 2 boost pressure required for nearly balanced fluxes. The residual Stage 2 Turbo exhaust, which in the past would be sent to drain, is then sent to the Stage 1 Turbo to boost up the 1st stage feed pressure. This means the HPP (High-Pressure Pump) does not have to, and therefore is smaller and requires less energy.
- **3**rd **step** is the designer can modify the "automatically created" design above as desired to meet his combination of needs which can be:
 - Balance flux by stage
 - Design for lowest lead element flux
 - Best permeate quality
 - Lowest energy requirement
 - Avoid high-pressure alarms

For more detailed instructions on the operation of the IMSD Cloud, you can reference the FAQs sheet found on the top menu bar of the design screen.

References:

- 1. FEDCO, white paper "A Significant Process Improvement for SWRO", 2022
- 2. Proceedings of the AMTA/DESA Joint Conference and Exposition, "FOUR YEAR OPERATION EXPERIENCE OF A LARGE-SCALE UF/SWRO INTEGRATED MEMBRANE PLANT" Craig R. Bartels, Roman Boda, Aziz H. Gulamhusein and Ashraf Al-Sheikh Khalil, Miami Beach, FL, 2011.
- 3. FEDCO, white paper "The Case for High Recovery SWRO", 2022

Appendix:

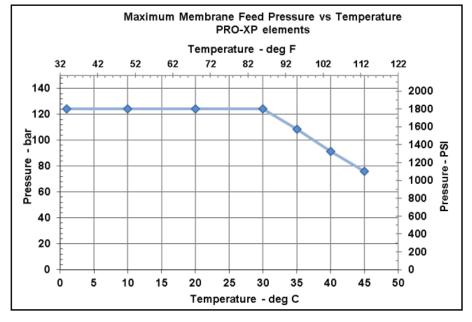
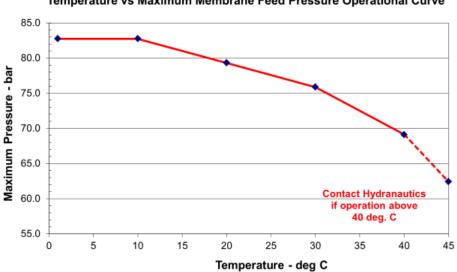



Figure 5. Maximum Membrane Feed Pressure-Temperature Curve for PRO-XP elements

Temperature vs Maximum Membrane Feed Pressure Operational Curve

Figure 6. Temperature vs Pressure Operation Limits for SWC Membranes (with ABS/GF core tubes- Metric values)

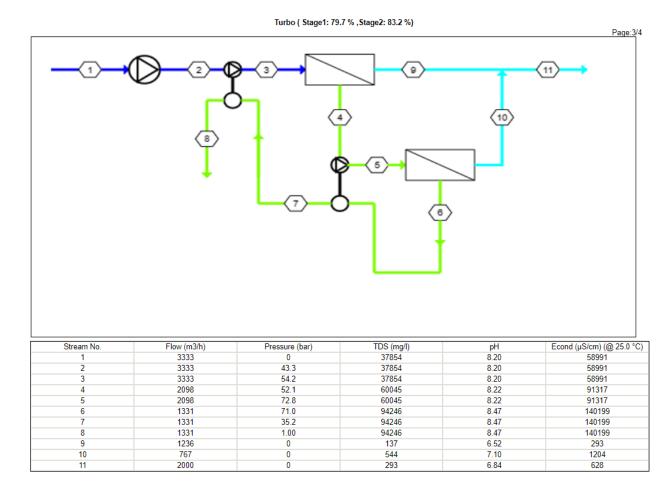
	Dashboar	d De	sign Guid	lelines	IMSDesign	Options	Docume	nts Con	tact Us	Help	Water Cl	hemistry	2	vayne.bates	@nitto.c	om
-	Analysis	Design	a Calc	ulation	Post Treat	nent	Version :	234.93.1.3.	#	F	ile Name : N	lulti-Stag	e Turbo	SWRO Ca	ribbear	1_25.0C_(
Nev	Save project	~	meate Blend meate press		Feed pressure Booster Pump	PE/	_ /	Summary Ca		Print	Flow Diagram	▼ Basic	- H-H Partial	-	Tools F	🕄
	Save project as	😂 Con	centrate Cir				1				Float Diagram					
	ct file			sign Optio		ERD			Actio				Two Pa		Tools	
Proje	ect : Multi-Stage T		Client Nam		urbo Ca	iculated by :	wayne bate	s Tempe	rature :		C Water type	System	ce Preu	eatment : <u>M</u>	F/UF D	ate : 03/03/.
	Train Information Feed pH Permeate recovery Permeate flow Average flux Feed flow Concentrate flow	% [1]m	m3/h 🗸	Pass 1 8.2 60.0 2000.0 14. 3333.3 1333.3	0	Chemic Membr Flux de <u>Fouling</u>	cal concentrati cal dose ane age <u>year</u> cline %, <u>per y</u>	mg/l ✔ s rear		1 one 100 0 0.0 0.0 0.0 1.00 7.0		Total plant Number of Inter-stage	trains	bar		2000.00 1 0.207
[System Specific Membrane type Membranes/vessel No. of vessels Turbo Boost, bar Exhaust, bar		10		Stage 2 SWC8 MAX 7 200 18.89 35.19				Pass stage: Re		¢	©			Ca	ncel

2nd and 3rd Step: IMSDesign data entry screen

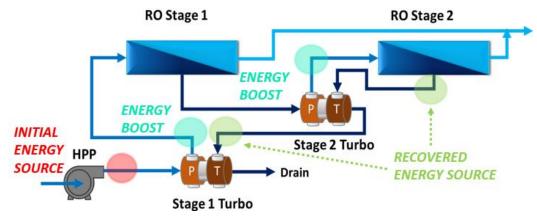
		Dashb	oard	Design	Guideli	nes IMS	Design Opt	ions Do	cuments	Contact Us	Help	Water (Chemistry	wayne.	bates@ni	tto.com
	V	Analysi	s De	esign	Calcula	ation Pos	st Treatmen	nt Vei	sion : 234.9)3.1.3.#	File	Name :	Multi-Stage	Turbo SWR	O Carib	bean_25.0C
	lew S	Jave projec	t 😩		e Blending e pressure			PE/WE	Return Sum	mary Calculation	Print	Flow Diagra	am Basic		Partial	ools Full Scree
	Sa	ve project a	s 🕼	Concentr	ate Circula	ation					1	Float Diagra	am			
	oject fil					n Options		ERD		Acti				Two Pass		ools
Pr	oject :	Multi-Sta	ge Turbo	SW Clie	nt Name :	Multi-Turbo	Calcula	ted by : way	ne bates	Temperature :	25.0 ° <u>C</u>	Water type	e : Sea Surface System	e Pretreatme	nt : <u>MF/U</u>	<u>F</u> Date : 03/0
	Feed Perm Perm Aver Feed	in Inform I pH neate recom- neate flow age flux I flow centrate flo	rery	% <u>m3/h</u> m3/h m3/h		Pass 1 8.20 60.00 2000.00 14.0 3333.33 1333.33		Chemical Chemical cor Chemical dos Membrane ag Flux decline 9 Fouling factor SP increase 9	e <u>mg</u> ge <u>years</u> 6, <u>per year</u> 1		lone 100 0 0.0 5.00 1.00 7.0		Total plant p Number of tr Inter-stage p	ains	m3/h bar	2000.00 1 0.207
	Cal	culation	Results							(A	ll flows are per v	vessel)	▲ Warnir	ıq		
		Array	Vesse	ls Fe	ed (bar)	Conc (bar)	Feed (m3/h)	Conc (m3/I	n) Flux (Imh) Highest flux (Imh)	Highest bet	a	<u>Antiscal</u>	ant required		
		1-1	300 200		54.2 72.8	52.1 71.0	11.11 10.49	6.99	14.4	23.8	1.03	^				
		neate Co				Sr 0.010		8.480 PO4		CO2 0.597	1.00					
		Na 104	951	Ba O		04 5.296		0.298 SiO2 0.013 B	1.276	CO3 0.001 pH 6.8 TDS 293.12	<u>mg/l</u>					
		CaSO4 CaSO4 BaSO4 Ca3(PO4)	, %	70 63 0.00	SrSO4 SiO2 CaF2	% 92 % 0	Osm	notic pressure CCPP Langelier	68.8 <u>bar</u> 152.75 mg 2.15		8.5 94245.9 mg/l					

2nd and 3rd Step: Design Screen calculated output

Page 12 of 16


IMSDesign Printout Page 1: Design Summary

Project I	200		Multi-Stag	o Turbo S		Caribbo	20	Turbo (Stage1: 7	'9.7 % ,Stage2	: 83.2 %)				1/4
Client N			wun-Stage	Multi-Tur		Calibbe	dii				D	ermeate flo			2000.00 m3/h
												aw water fl			3333.33 m3/h
Calculat			v v	vayne bat	tes	2222	22								
HP pum	•						33 m3/h					ermeate re			60.00 %
	p pressure						3.3 bar					lembrane a	•		0.0 years
Feed pr							l.2 bar					lux decline			5.0 %
	mperature						5.0 °C					ouling facto			1.00
Feed W						8.						P increase			7.0 %
	al dose, mg/l					No						iter-stage p	ipe loss		0.207 bar
	g specific en	ergy					50 kWh	m3				eed type			Sea Surface
Pass NE							7.4 bar				P	retreatmen	t		MF/UF
Average	flux					14	1.0 lmh								
Pass-	Perm.		Vessel	Flux	DP	Flux	Beta		Stagew	ise Pressure		Perm.	Membrane	Membrane	PV# x
Stage	Flow	Feed	Conc			Max		Perm.	Boost	Exhaust	Conc	TDS	Туре	Quantity	Elem #
	m3/h	m3/h	m3/h	Imh	bar	lmh		bar	bar	bar	bar	mg/l			
1-1	1235.5	11.1	7.0	14.4	2.1	23.8	1.03	0.0	10.9	1.0	52.1	137.0	SWC4 MAX	2100	300 x 7M
1-2	766.5	10.5	6.7	13.4	1.9	32.1	1.05	0.0	18.9	35.2	71.0	544.0	SWC6 MAX	1400	200 x 7M
lon (mg	-/IV				Raw W	lator	_	Feed Wat	or	Dormoa	te Water		Concentrate	1	ncentrate 2
	ss, as CaCO	3				7220.7			7220.78	rennea	te water	7.035	concentrate	11471.7	18069.5
Ca		•		_		467.0			467.00			0.455		741.9	1168.6
Mg						1477.0			1477.00			1.439		2346.5	3696.1
Na						11251.0	0	1	1251.00			104.951		17848.6	28013.6
K						703.0			703.00			8.191		1114.8	1747.9
Ba						0.00			0.006			0.000		0.0	0.0
Sr						10.00			10.000			0.010		15.9	25.0
CO3				_		33.9			33.94			0.001		69.4	151.4
HCO3 SO4				_		190.0 2644.0			190.00 2644.00			2.729 5.296		263.1 4199.8	309.5 6612.3
CI						21067.0			1067.00			168.460		33428.4	52496.5
F						0.8		2	0.80			0.013		1.3	2.0
NO3						5.0			5.05			0.298		7.9	12.2
В						5.0	5		5.05			1.276		7.7	10.7
CO2						0.6			0.60			0.60		0.78	0.84
NH3						0.0		_	0.00			0.00		0.00	0.00
TDS pH				_		37853.8 8.2		3	7853.85 8.20			293.12 6.84		50045.27 8.22	94245.88 8.47
Saturatio	ons					0.2		w Water	0.20	Feed Water			ite Water	Concentrate	Limits
	Ksp * 100, 9	6						22		22			0	70	400
	Ksp * 100, %							29		29			0	92	1200
	Ksp * 100, 9							22		22			0	63	10000
	turation, %	0						1		1			0	1	140
	(uration, %)							0		0			0	0	50000
Carz / K Ca3(PO4								0.0		0.0			0	0.0	2.4
CCCPP, m	· · · · · · · · · · · · · · · · · · ·							55.47		55.47			.71	162.17	2.4
								1.21		1.21			.79	2.11	2.8
Langelie								0.75		0.75			.01	1.88	2.0
Ionic stre	pressure, ba	-						27.6		27.6		-	.01	68.8	
USITIOTIC								21.0		21.0		(00.0	
TDP/O	smotic press							1369.1		1369.1		40	04.2	1369.4	


IMSDesign Print Page 2: Stage and Element Summary

								Turbo (Stage1: 79	.7 % ,Stage2	: 83.2 %)				
Project r	name		Multi-Stage	e Turbo S	SWRO	Caribbe	an					•			2/4
Client N	ame			Multi-Tu	rbo						F	Permeate flow	w/train		2000.00 m3/h
Calculat	ed by		W	/ayne ba	tes						F	Raw water flo	ow/train		3333.33 m3/h
HP pum	p flow					3333.	33 m3/h				F	Permeate rec	covery		60.00 %
HP Pum	p pressure					43	3.3 bar				N	Aembrane ag	ge		0.0 years
Feed pre	essure					54	1.2 bar				F	lux decline,	per year		5.0 %
Feed ter	mperature					2	5.0 °C				F	ouling factor	r		1.00
Feed Wa	ater pH					8.	20				S	P increase,	per year		7.0 %
Chemica	al dose, mg/	1				No	ne				li li	nter-stage pi	pe loss		0.207 bar
Pumping	specific en	ergy				2	50 kWh/	/m3				eed type			Sea Surface
Pass NE)P					1	7.4 bar				F	retreatment			MF/UF
Average	flux					14	1.0 lmh								
Pass-	Perm.	Flow /	Vessel	Flux	DP	Flux	Beta		Stagewis	e Pressure		Perm.	Membrane	Membrane	PV# x
Stage	Flow	Feed	Conc			Max		Perm.	Boost	Exhaust	Conc	TDS	Туре	Quantity	Elem #
5	m3/h	m3/h	m3/h	Imh	bar	Imh		bar	bar	bar	bar	mg/l		,	
1-1	1235.5	11.1	7.0	14.4	2.1	23.8	1.03	0.0	10.9	1.0	52.1	137.0	SWC4 MAX	2100	300 x 7M
1-2	766.5	10.5	6.7	13.4	1.9	32.1	1.05	0.0	18.9	35.2	71.0	544.0	SWC6 MAX	1400	200 x 7M

	Pass- me	embrane	Feed	Pressure	Conc	NDP	Permeate	Water	Recovery			Permeate (Sta	agewise	cumulative	e)
	Stage	no.	Pressure	Drop	Osmotic pressure		Flow	Flux		Beta	TDS	Econd (@ 25.0 °C)	Ca	Na	CI
			bar	bar	bar	bar	m3/h	lmh	(%)		mg/l	μS/cm	mg/l	mg/l	mg/l
1 st	Stage	1	54.2	0.41	30.3	24.1	1.0	23.8	8.7	1.03	66.6	78.0	0.103	23.857	38.280
	1-1	2	53.8	0.36	33.0	21.4	0.8	20.2	8.1	1.03	75.2	88.1	0.116	26.929	43.209
	1-1	3	53.4	0.32	35.5	18.4	0.7	16.6	7.3	1.03	85.2	99.8	0.132	30.512	48.958
	1-1	4	53.1	0.29	38.0	15.7	0.6	13.6	6.4	1.02	96.4	113.0	0.149	34.540	55.422
	1-1	5	52.8	0.27	40.2	13.1	0.4	10.9	5.5	1.02	108.9	127.6	0.169	38.990	62.564
	1-1	6	52.6	0.25	42.2	10.9	0.4	8.7	4.7	1.02	122.4	143.4	0.190	43.839	70.344
	1-1	7	52.3	0.23	43.8	8.9	0.3	7.0	3.9	1.01	137.0	160.5	0.212	49.057	78.719
2 nd	Stage	1	72.8	0.36	50.1	23.4	1.3	32.1	12.5	1.05	182.7	213.8	0.283	65.354	104.900
	1-2	2	72.5	0.31	55.5	18.1	0.9	21.7	9.7	1.04	230.1	269.3	0.357	82.314	132.124
	1-2	3	72.2	0.27	59.7	13.4	0.6	14.6	7.2	1.03	283.9	332.4	0.440	101.591	163.069
	1-2	4	71.9	0.25	63.1	9.7	0.4	10.2	5.4	1.02	342.4	400.9	0.531	122.526	196.677
	1-2	5	71.6	0.23	65.7	6.9	0.3	7.0	3.9	1.01	405.5	474.9	0.629	145.119	232.949
	1-2	6	71.4	0.22	67.5	4.8	0.2	4.8	2.8	1.01	472.9	584.7	0.734	169.249	271.691
	1-2	7	71.2	0.21	68.8	3.2	0.1	3.2	1.9	1.01	544.1	658.8	0.845	194.759	312.653

IMSDesign Printout Page 3: Flow Diagram

IMSDesign Printout Page 4: Power Calculations

								Turbo (Stano1 · 70	.7 % ,Stage2	. 83 2 %	}			
Project n	ame	1	Multi-Stage	e Turbo S	WRO	Caribbe	an	Tubb (Juge1. 15	.1 /0, Stayez	. 03.2 /0	4			4/4
Client Na				Multi-Tu							I	Permeate flo	w/train		2000.00 m3/h
Calculate	ed by		w	/ayne ba	tes						1	Raw water flo	ow/train		3333.33 m3/h
HP pump	flow					3333.	33 m3/h				F	Permeate rec	covery		60.00 %
HP Pum	o pressure					43	3.3 bar				1	Membrane a	ge		0.0 years
Feed pre	ssure					54	1.2 bar				I	Flux decline,	per year		5.0 %
Feed ten	nperature					25	5.0 °C				I	Fouling facto	r		1.00
Feed Wa	ter pH					8.	20					SP increase,	per year		7.0 %
Chemica	l dose, mg/l					No	ne				1	nter-stage pi	pe loss		0.207 bar
Pumping	specific en	ergy				2.	50 kWh/i	m3			F	Feed type			Sea Surface
Pass ND	Р					17	.4 bar				I	Pretreatment			MF/UF
Average	flux					14	1.0 lmh								
Pass-	Perm.	Flow /	Vessel	Flux	DP	Flux	Beta		Stagewis	e Pressure		Perm.	Membrane	Membrane	PV# x
Stage	Flow	Feed	Conc			Max		Perm.	Boost	Exhaust	Conc	TDS	Туре	Quantity	Elem #
	m3/h	m3/h	m3/h	Imh	bar	Imh		bar	bar	bar	bar	mg/l			
1-1	1235.5	11.1	7.0	14.4	2.1	23.8	1.03	0.0	10.9	1.0	52.1	137.0	SWC4 MAX	2100	300 x 7M
1-2	766.5	10.5	6.7	13.4	1.9	32.1	1.05	0.0	18.9	35.2	71.0	544.0	SWC6 MAX	1400	200 x 7M

Calculation of Power Requirement

Pass 1	Total system power
43.3	
2000.0	
3333.3	
87.0	
95.0	
97.0	
6694.0	
4993.7	4993.7
	2.50
	43.3 2000.0 3333.3 87.0 95.0 97.0 6694.0

Pictures Courtesy of FEDCO

(front rotor shroud removed for clarity)

Hydranautics Corporate office 401 Jones Road, Oceanside, CA 92058, USA Toll Free: +1-800-CPA-PURE Tel: +1-760-901-2500 Fax: +1-760-901-2578 Web: www.membranes.com Email: hy-info@nitto.com